Forward Transform (Time → Frequency):
Cosine coefficients:
$$F_{\cos}[k] = \frac{c_k}{N} \sum_{n=0}^{N-1} x[n] \cos\left(\frac{2\pi kn}{N}\right)$$
Sine coefficients:
$$F_{\sin}[k] = \frac{c_k}{N} \sum_{n=0}^{N-1} x[n] \sin\left(\frac{2\pi kn}{N}\right)$$
where $c_k = 1$ for $k = 0, N/2$ and $c_k = 2$ otherwise
$k = 0, 1, \ldots, N/2$ and $N$ is the number of samples
Reconstruction (Frequency → Time):
$$x[n] = \sum_{k=0}^{N/2} F_{\cos}[k] \cos\left(\frac{2\pi kn}{N}\right) + F_{\sin}[k] \sin\left(\frac{2\pi kn}{N}\right)$$
This reconstructs the original signal from its frequency components
Each frequency $k$ contributes:
$$A_k \cos\left(\frac{2\pi kn}{N} - \phi_k\right)$$
where:
Enter comma-separated values
Urdhva Tiryagbhyam is a Vedic mathematics sutra meaning "vertically and crosswise".
It provides a systematic method for multiplying two numbers by:
-
This page compares FFT computation using two multiplication methods:
The comparison shows: